1) Determine whether each point lies on the line represented by the parametric equation:
$x=-2+t, y=3 t, z=4+t$
a) $(0,6,6)$
b) $(2,3,5)$
2) Determine whether each point lies on the line represented by the symmetric equation: $\frac{x-3}{2}=\frac{y-7}{8}=z+2$
a) $(7,23,0)$
b) $(1,-1,-3)$
3) A line passes through the points $(0,4,3)$ and $(-1,2,5)$, find the following (write the direction number as integers):
a) Parametric equations of the line.
b) Symmetric equations of the line.
4) Find a set of parametric equations of the following lines:
a) The line that passes through the point $(2,3,4)$ and is parallel to the $x z$-plane and the $y z$-plane .
b) The line that passes through the point $(2,3,4)$ and is perpendicular to the plane given by $3 x+2 y-z=6$
c) The line that passes through the point $(5,-3,-4)$ and is parallel to $\vec{v}=\langle 2,-1,3\rangle$.
d) The line that passes through the point $(2,1,2)$ and is parallel to the line: $x=-t, y=1+t, z=-2+t$
5) Determine which of the following lines are parallel and which once are identical.

$$
\begin{aligned}
& L_{1}: x=6-3 t, \quad y=-2+2 t, \quad z=5+4 t \\
& L_{2}: x=6 t, \quad y=2-4 t, \quad z=13-8 t \\
& L_{3}: x=10-6 t, \quad y=3+4 t, \quad z=7+8 t \\
& L_{4}: x=-4+6 t, \quad y=3+4 t, \quad z=5-6 t
\end{aligned}
$$

6) Determine the point where the lines intersect and the cosine of the angle of intersection.

$$
\begin{aligned}
& x=4 t+2, \quad y=3, \quad z=-t+1 \\
& x=2 s+2, \quad y=2 s+3, \quad z=s+1
\end{aligned}
$$

7) Determine whether the plane $x+2 y-4 z-1=0$ passes through each point.
a) $(-7,2,-1)$
b) $(5,2,2)$
8) Find an equation of the plane:
a) The plane passes through $(3,-1,2),(2,1,5)$, and $(1,-2,-2)$.
b) The plane passes through the point $(1,2,3)$ and is parallel to $y z$-plane.
c) The plane contains the lines given by: $\frac{x-1}{-2}=y-4=z$ and $\frac{x-2}{-3}=\frac{y-1}{4}=\frac{z-2}{-1}$
d) The plane passes through the point $(2,2,1)$ and contains the line given by: $\frac{x}{2}=\frac{y-4}{-1}=z$
e) The plane passes through the points $(2,2,1)$ and $(-1,1,-1)$ and is perpendicular to the plane $2 x-3 y+z=3$.
f) The plane passes though the points $(4,2,1)$ and $(-3,5,7)$ and is parallel to the z-axis .
9) Find the points where the line $x=1-2 t, y=-1+3 t, z=-4+t$ intersects the $x y, x z$ and $y z$-planes .
10) Find an equation of the plane that contains all the points that are equidistant from the points: $(2,2,0)$ and $(0,2,2)$
11) Determine whether the planes are parallel, orthogonal or intersect. If they intersect find the angle of intersection.

$$
\begin{aligned}
& x-3 y+6 z=4 \\
& 5 x+y-z=4
\end{aligned}
$$

12) Find the x, y and z intercepts of the plane $4 x+2 y+6 z=12$.
13) Find a set of parametric equations for the line of intersection of the planes:

$$
\begin{aligned}
& 3 x+2 y-z=7 \\
& x-4 y+2 z=0
\end{aligned}
$$

14) Find the point(s) of the intersection (if any) of the plane $2 x-2 y+z=12$ and the line $x-\frac{1}{2}=\frac{y+(3 / 2)}{-1}=\frac{z+1}{2}$. Also determine whether the line lies in the plane.
15) Find the distance between the point $(2,8,4)$ and the plane $2 x+y+z=5$.
16) Verify that the two planes are parallel, and find the distance between the planes.

$$
\begin{aligned}
& x-3 y+4 z=10 \\
& x-3 y+4 z=6
\end{aligned}
$$

17) Find the distance between the point $(1,-2,4)$ and the line $x=2 t, y=t-3, z=2 t+2$.
18) Verify that the lines are parallel, and find the distance between them:

$$
\begin{aligned}
& L_{1}: x=2-t, \quad y=3+2 t, \quad z=4+t \\
& L_{2}: x=3 t, \quad y=1-6 t, \quad z=4-3 t
\end{aligned}
$$

19) Find the distance between the skew lines:

$$
\begin{aligned}
& x=1+t, \quad y=1+6 t, \quad z=2 t \\
& x=1+2 s, \quad y=5+15 s, \quad z=-2+6 s
\end{aligned}
$$

20) Find the standard equation of the sphere with center $(-3,2,4)$ that is tangent to the plane given by $2 x+4 y-3 z=8$.
